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Abstract

We explore the notion of a Well-spaced Blue-noise Distribution (WBD) of points, which combines two desirable properties. First, the point
distribution is random, as measured by its spectrum having blue noise. Second, it is well-spaced in the sense that the minimum separation
distance between samples is large compared to the maximum coverage distance between a domain point and a sample, i.e. its Voronoi cell
aspect ratios 2βi are small. It is well known that maximizing one of these properties destroys the other: uniform random points have no aspect
ratio bound, and the vertices of an equilateral triangular tiling have no randomness. However, we show that there is a lot of room in the middle
to get good values for both. Maximal Poisson-disk sampling provides β = 1 and blue noise. We show that a standard optimization technique
can improve the well-spacedness while preserving randomness.

Given a random point set, our Opt-βi algorithm iterates over the points, and for each point locally optimizes its Voronoi cell aspect ratio
2βi. It can improve βi to a large fraction of the theoretical bound given by a structured tiling: improving from 1.0 to around 0.8, about half-
way to 0.58, while preserving most of the randomness of the original set. In terms of both β and randomness, the output of Opt-βi compares
favorably to alternative point improvement techniques, such as centroidal Voronoi tessellation with a constant density function, which do not
target β directly. We demonstrate the usefulness of our output through meshing and filtering applications. An open problem is constructing
from scratch a WBD distribution with a guarantee of β < 1.
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1. Introduction

Many applications desire a distribution of points that are not too
close to one another, yet are evenly distributed throughout the
domain. Such points are well-spaced, or separated yet dense.
The separation distance improves efficiency; close points of-
ten add little information, yet they consume time and memory.
Well-spaced points reduce the interpolation and simulation er-
ror in scientific applications. Points spread uniformly can help
reduce noise or variance. Graphics applications often desire
randomness to help reduce aliasing or bias. Blue noise refers to
distributions that are roughly uniform random with no preferred
inter-point directions or distances. Note that well-spacedness
is a local measure of nearby points. In contrast blue noise is a
global measure dependent on the distances between far points.
Some methods for well-spaced points often do not produce
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blue noise: e.g. periodic tilings such as lattices and structured
meshes; raw low discrepancy sequences; and Delaunay Refine-
ment (DR).

In the 1990s, the fracture mechanics community studied the
effects of mesh structure in finite element fracture simulations
where the crack directions are limited to mesh edges [5]. They
concluded that uniform random points lead to uniform random
edge orientations, and more physically realistic simulations.
Both Delaunay and dual Voronoi elements are of interest. The
initial techniques for generating such meshes included simple
jittering, perturbing the position of points. Interest in the topic
recently revived, and researchers have developed more sophis-
ticated techniques, including random sampling [3,4,13,14,34].
Computer graphics has a long-standing interest in techniques
for blue-noise distributions, for applications such as rendering
[10,30], animation [35], modeling [42,31], and imaging [1,17].
Graphics provides standardized methods for determining if a
distribution has blue noise [36].

The well-spacedness of a distribution can be characterized by
two measures: conflict, which is about the spacing between
samples, and coverage, which is about how samples collec-
tively cover the underlying domain. The conflict distance rf is



(a) Two-Radii MPS, β > 1 (b) MPS, β = 1 (c) Opt-βi, β < 1 (d) MPS mesh, β = 1 (e) Opt-βi mesh, β = 0.746

Fig. 1. Maximal Poisson-disk sampling (MPS) with different uniformity as measured by β = rc
rf

. In Poisson-disk sampling, each black sample point must
be outside all other points’ red conflict disks with radii rf . A distribution is maximal if the blue coverage disks with radii rc cover the entire domain.
Differentiating the two types of disks results in three sampling scenarios: (a) Two-radii MPS [27] where rf < rc. The distribution is less uniform and more
random than MPS. (b) Maximal Poisson-disk Sampling (MPS) [16] where rf = rc. (c) Opt-βi, with rf > rc; this work. Opt-βi is more uniform and less
random than MPS, improving the well-spacedness while retaining most of the blue-noise properties, as seen in the meshes in (d) and (e).

the minimum distance between two samples, the coverage dis-
tance rc is the maximum distance between a domain point and
a sample, and β = rc/rf is our spacing measure. The allowed
(or target) values in an algorithm and the achieved values in
its output are different concepts. In typical algorithms, these
distances are enforced a priori by placing disks around sample
points. On output, sample points might be farther apart than
the enforced minimum, and domain points might be closer to
a sample than the enforced maximum. See Figs. 1–3 for illus-
trations and Section 4 for formulations.

Different methods achieve various degrees of conflict and cov-
erage. Dart throwing [10] enforces rf , and attempts to have out-
put rc close to it, but usually falls short. Maximal Poisson-disk
Sampling (MPS) [16] enforces both and has rf = rc. Two-radii
MPS [27] also enforces both, but encourages more randomness
(and less uniformity) by using rc > rf . In practice, for even a
few thousand points, MPS output rf is just slightly larger than
the enforced rf , and output rc is just slightly smaller than the
enforced rf , because a local case similar to Fig. 3b or 3c is
very likely. That is, MPS guarantees output β ≤ 1, and usually
achieves β very close to 1. Two-radii MPS guarantees output
β ≤ target β, and typically achieves something close to it.

There is some correlation between coverage/conflict and ran-
domness, but the two are not proportional. At one extreme,
uniform random points (also known as white noise or Pois-
son Sampling PS without disks) has unbounded coverage and
conflict. Spectrum plots of MPS and Two-radii MPS distribu-
tions [27] and Opt-βi (Fig. 9) show a strong correlation be-
tween larger achieved β and more randomness.

However, this is not the full story. In two dimensions, the ver-
tices of the equilateral-triangle tiling achieve the minimum pos-
sible β, with rc = rf/

√
3. It is the only distribution achieving

this value, and distributions coming close to this value bear
some resemblance to it. The vertices of its dual, the hexagonal
tiling, have rc = rf . The square tiling has β = 1/

√
2, some-

where in between. By adding or moving a single point of any
of these one can generate a periodic tiling with any larger β
desired,∞ > β > 1/

√
3. Delaunay Refinement (DR) [8,38] is

a deterministic process for generating a triangulation. Its out-

put vertices achieve rc ≤ rf , and its spectra show features
of both regularity and MPS. None of the tilings or algorithms
mentioned in this paragraph are random. However, a random
algorithm such as MPS or even PS could in principle produce
one of these, albeit with very small probability. The possible β
achieved by different distribution types are shown in Fig. 2.
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Fig. 2. Distributions by aspect ratio β, in two dimensions. Here 4, �, and
7 are the vertices of the equilateral triangle, square, and regular hexagonal
tilings of the plane. PS is Poisson Sampling without conflict disks. DR is
Delaunay Refinement. MPS is Maximal Poisson-disk Sampling. No point
distribution can achieve β < 1/

√
3 in two dimensions, or β < 0.5 in any

dimension.

Any random sampling method that only considers local criteria
when placing points, and never moves them, cannot be guaran-
teed to achieve any target value of βt < 1. The alternatives are
to consider global constraints, or to adjust point locations, as
Opt-βi does in this paper. The reason that local decisions and
fixed locations are insufficient is that it is easy to “paint your-
self into a corner,” meaning that selecting points independently
can create a subregion that is impossible to cover without plac-
ing points too close together. This can easily happen for any
value of β < 1; see Fig. 3. Achieving β < 1 is actually more
challenging than achieving β = 1 [16] or β > 1 [27].

To summarize,

– β > 1 is produced by Two-radii MPS [27], and the user may
select β. Uniform sampling without disks produces white
noise, which may have β approaching ∞.

– β = 1 is produced by traditional maximal Poison-disk sam-
pling [16]. Stopping short of maximality produces β > 1.
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βt < 1/
√

3

(a) No solution

β = βt = 1/
√

3

(b) One solution

βt < 1

(c) Painted into a corner

Fig. 3. Trying to achieve target ratio βt using fixed rc and rf disks. In a
solution the red rf conflict disks must be free of other samples, and the
blue rc coverage disks must cover the entire domain. In (a), any new blue
disk centered outside the red disks would be too small to cover the point
equidistant from the three extant samples. In (b) , there is only one solution:
vertices forming equilateral triangles. In (c), algorithms that incrementally
add points and never move them can easily get stuck even if βt is very close
to 1. The red center is too isolated to be coverable by blue disks, just as in (a).

– β < 1 is produced by Opt-βiand it tends to make the distri-
bution more uniform. Incremental insertion rarely achieves
β significantly below 1.

– The smaller the β, the more uniform a point set tends to be,
but this is a feature of both the random process generating
the points and β. In two dimensions, β = 1/

√
3 indicates a

periodic equilateral triangle tiling. A periodic structure can
be tuned to any larger value of β. The minimum achievable β
is dimension dependent, but β ≥ 1/

√
3 in two-dimensions,

and β ≥ 0.5 by definition.

2. Spacing measures in other contexts

There are prior formulations quantifying both conflict and cov-
erage, such as minimal spacing rf in dart throwing [10], nor-
malized spacing ρ [22], and coverage radius rc [27]. Discrep-
ancy measures spatial uniformity by comparing the fraction of
points in any box to the fraction of the domain (volume) in that
box [39]. In spatial statistics, in the hard-core Strauss disc pro-
cess, rf is known as the inhibition radius and rc is known as
the coverage radius. In biological system analysis, e.g. forestry
image analysis [6], one usually observes a (non-maximal) point
distribution that is assumed to come from this process, then
seeks to estimate the hidden generating parameters.

In computational geometry, rif is twice the inradius of the ith
Voronoi cell. And ric is known as the outradius of the Voronoi
cell, the distance from a seed point to the furthest Voronoi vertex
of its cell. The outradius/inradius ratio is the Voronoi cell aspect
ratio,A = 2βi. Since outradius≥ inradius,A ≥ 1 and βi ≥ 0.5
in any dimension. A point set with maximum aspect ratio A is
called an A-well-spaced set [40]. Much effort [19,26] has been
devoted to generating A-well-spaced sets, for both uniform and
spatially varying densities. Usually the upper bound on A is
greater than 2, but we strive for A < 2.

In graphics a common measure of point distributions is the
relative radius ρ [22]. Its definition starts with non-overlapping
disks with constant rf/2 radius. The packing density η is the

fraction of the domain area covered by these disks; η is itself a
popular measure in physics. Given a unit-area periodic domain
containing N disks, rmax is the radius achieved by the densest
(in terms of η) known arrangement, assuming that N divides
evenly into that tiling. In two dimensions, rmax = const/

√
N.

We define ρ = rf/(2rmax), where ρ ∈ [0, 1]. Thus ρ is directly
related to rf , but only indirectly related to rc through N. For
example, if we create a gap by removing one vertex (disk) from
an equilateral triangle tiling, then ρ decreases by a factor of√
N − 1/

√
N , a negligible change if N is large, but rc and β

almost double from 1/
√

3 to 1. In our context the number of
pointsN is fixed, so we have β ∝ rc/ρ. Area coverage and rmax
is a global averaging over the disks, whereas ric is a maximum
achieved in a local neighborhood of a point, its Voronoi cell.
We think that βi is a better measure of local spacing than ρ
because β measures local gaps and ρ does not.

3. Comparison methods

We compare our method against three alternative sampling tech-
niques. While they all strive to improve the spatial quality of a
distribution, none optimize βi directly as we do.

3.1. Centroidal Voronoi Tessellation CVT

A CVT [12] is defined as a distribution in which each point is at
the center of mass of its Voronoi cell. The earliest technique to
achieve a CVT is Lloyd’s iteration [25], iteratively moving each
point to the center of its Voronoi cell. Recently Liu et al. [24]
improved the speed of converging to a CVT by recognizing the
second-order smoothness of its energy function, and optimizing
it using a quasi-Newton method. But the converged solution is
the same. The CVT converges to an equilateral triangle tiling,
absent boundary effects. For this reason, many applications stop
short of convergence.

Based on the iterative method definition, one might expect CVT
to improve ric, and not degrade rif , at least in the average sense.
Our experience is that CVT tends to decrease the maximum
coverage radius rc, but does not provide any control over the
minimum disk-free radius rf .

3.2. DistMesh

DistMesh is a popular point relocation technique that aims
to make the Delaunay edge length distribution match a user-
specified sizing function [33]. This technique simply treats each
Delaunay edge as a spring that can expand or contract; but if its
length is less than the user-specified sizing function it can only
expand. For the uniform case, the sizing function is constant
and is usually chosen to be 20% more than the desired edge
length. While this technique is good for improving the quality
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of the majority of the elements, it is not as good for improving
the worst-quality elements.

In contrast to CVT, DistMesh tends to increase the disk-free
radius rf of an MPS, however, it does not provide any control
over the coverage radius rc.

3.3. Farthest neighbor (Far-Point)

Farthest neighbor [37,7] is an iterative technique that moves
each point to the Voronoi vertex farthest from its immediate
neighbors. As such it locally optimizes rif , and ignores ric. The
algorithm works by finding the Delaunay neighbors N = {xj}
of sample xi, computing the Voronoi vertices of N (without
xi), then reinserting xi at the Voronoi vertex with the maximum
minimum distance to N . If N are not in convex position, there
will be some Voronoi vertices far from the convex hull of N ;
these vertices are ignored.

This technique tends to increase all Delaunay edge lengths, not
only the short ones.

3.4. Our method, Opt-βi

We propose Opt-βi, local optimization of the βi of the initial
MPS sample positions, stopping when a user-specified ratio
βt = rc/rf is achieved. By tuning β, our method can produce
sample distributions with a level of uniformity and randomness
as desired by the users. There is no guarantee that our method
can achieve any value of β < 1, or even that β will not increase,
but in practice we can obtain β ≈ 0.75.

In the sampling methods of Section 1, at least one of rc or rf is
a fixed enforced value. Opt-βi is different, in that these are both
measured quantities of the output. We simultaneously adjust
both rc and rf in pursuit of optimizing their ratio β. Moving
points might increase rf or decrease rc. Experiments show
that despite this possibility, we usually simultaneously achieve
both an increased rf and a reduced rc, while maintaining good
spectra; see Table 1 and Fig. 5. We compare the methods over
a periodic square in Fig. 4.

Our paper has the following main contributions.

– Introducing and formalizing the notion of Well-spaced Blue-
noise Distributions (WBDs).

– Proposing an algorithm, Opt-βi, to generate a WBD with
controllable uniformity and randomness through βt.

– Demonstrating the benefits of a WBD and Opt-βi through
applications in geometry meshing and image filtering.

4. Formal definitions

Conflict radius rf . The minimum achieved spacing between
any pair of samples in the set S. For example, for MPS, at
least the enforced Poisson-disk radius.

Coverage radius rc. Any point in the domain Ω will be at
most rc away from the nearest sample in S . Equivalently, the
set of spheres with radius rc will cover the entire domain.

Ratio β. The ratio between conflict and coverage is measured
by β = rc/rf . This is the ultimate objective of our method.

Initial radii. The input (MPS) point set has rMPS = rf = rc.

During the local optimization procedure, we only consider the
local values of these quantities, i.e.

Adjusted point xi. We move one point at a time, xi ∈ S.

Conflict radius rif . Distance from xi to its nearest xj ∈ S.

Coverage radius ric. Distance from xi to the farthest vertex of
its Voronoi cell, i.e. the distance to the domain point farthest
from xi that is not closer to some other sample xj .

Local ratio βi. This is ric/r
i
f . Note that

β =
maxi r

i
c

minj r
j
f

≥ max
i

(βi) = max
i

(
ric
rif

)
. (1)

5. Opt-βi algorithm

We now describe our algorithm in detail. We start with an MPS,
or some other distribution with blue noise, with β = 1. (Recall
that the MPS output might have β < 1, but in practice β is so
close to 1 that we just say that β = 1.) It is possible to start
with other distributions, such as the output of DR, but, since
our method removes noise, the output will be limited by the
noise in the input. In principle it is also possible to start with
a distribution with β > 1; in this paper we assume that such
distributions are enriched to maximality with an MPS algorithm
so that β = 1.

The user specifies the target β = βt, the desired trade-off
between spacing and randomness. For two dimensions, βt ∈
[ 1√

3
, 1].

Let βi = ric/r
i
f denote the local coverage/conflict ratio. Ideally,

one might wish to simultaneously adjust the location of all
points to find a global minimum for β, or at least to minimize
the maximum of βi over all xi. A more practical method is to
iteratively move each xi towards its local optimum [20].

We iteratively reposition each sample point xi to locally mini-
mize its βi, until globally β < βt.

To reposition xi, we perform ten iterations of Nelder–
Mead [28]. Nelder–Mead is a downhill-traveling optimization
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(a) MPS, β = 1.0 (b) CVT, β = 0.827 (c) DistMesh, β = 0.873 (d) Far-Point, β = 0.965 (e) Opt-βi, β = 0.746

Fig. 4. Final mesh for a periodic unit box after applying various methods to the input MPS in (a). While CVT and DistMesh improve the quality of the
majority of the Voronoi cells, they tend to lose randomness at larger values of β. Far-Point on the other hand tends to violate the coverage condition. None
of the four methods were able to achieve β < 0.7 in general.
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Fig. 5. Distribution of quality measures. The left column compares the
different methods, and the right column compares Opt-βi for different β.

heuristic that requires only function values, not derivatives.
Its state consists of three candidate points c{1,2,3}, and the
βi function values if xi was repositioned at those locations.
To get started we select the first candidate point c1 at xi, the
second c2 at xi shifted in the x-axis direction by rMPS/10, and
the third c3 at xi shifted in the y-axis direction by rMPS/10.
These c{1,2,3} define a triangle, tilted in three dimensions by
assigning the respective height βi to its corners. Nelder–Mead
replaces the high corner by some point on the other side of its
opposite triangle edge, and recomputes a new triangle and its
tilt. We flip-flop through ten triangles and stop.
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Fig. 6. Variation of β as the iteration proceeds.

Each candidate may have different Delaunay neighbors than
the original point; we calculate βi using the candidate’s De-
launay neighbors, rather than the original points’ neighbors.
Sometimes, especially in initial iterations, xi moves outside of
the convex hull of its initial Delaunay neighbors: ric decreases
as xi moves towards the convex hull, but it may happen that rif
increases more rapidly, yielding a local improvement in βi. We
experimented with preventing this from happening, but found
it was faster to allow this to happen.

Often, improving βi causes a nearby point’s βj to get worse.
This is a common phenomenon in mesh smoothing algorithms,
and the common approach is to allow this to happen, and at-
tempt to remedy it later during the optimization of xj .

We sweep over all xi, locally optimizing and updating their po-
sitions. Each update happens immediately. That is, for a neigh-
bor xj of xi, we use the updated position of xi rather than its
initial position at the start of the sweep. Our input comes from
Simple MPS [15]. The output of that algorithm provides a nice
ordering to the points, by scan lines. Simple MPS divides the
domain into boxes of side length rMPS, and each box has at
most one point. On output the points are lexicographically or-
dered by the box they lie in, first by row then by column. This
is the order the points are visited during our Opt-βi sweep,
regardless of where they later migrate to. This is better than
considering points in random order.
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Fig. 8. Voronoi cell valence and ρ for different β achieved by Opt-βi and CVT. Recall that β ∝ rc/ρ. See also Fig. 8 in “Blue Noise. . . ” [11].

In each sweep we optimize the position of all xi, even if their
local βi is already small. We tried iterating over just the large-
βi points, but this tended to get us stuck in a local minimum.

For large targets, e.g. βt > 0.9, we often get far below it in
one or two iterations. To prevent that, we use a damping factor,
moving xi only about half-way (0.6 to 0.8) of the distance from
its initial to its Nelder–Mead optimized position.

Local patch smoothing is common for unstructured meshes [18].
Unlike patch smoothing, the connectivity of the implied
mesh, the set of Delaunay neighbors of each sample, changes
throughout our algorithm, and in our comparison methods.

6. Analysis

6.1. Angle and edge bounds

Here, we recall the relationship between β = rc/rf and the
edge lengths |e|, empty circumcircle radius R, and angles α in
a Delaunay Triangulation (DT) of the point set. The relation-
ships are well known, and they form the basis for the Delaunay
refinement [8] family of algorithms. We restate the succinct
summary from Mitchell et al. [27]:

Proposition 6.1 |e| ∈ [rf , 2R] and R ≤ rc.

Proposition 6.2 sinα ≥ |e|/2R.

Normalizing by rf , and noting that the largest angle in a triangle
is the supplement of the two smaller ones, we get the following.

Proposition 6.3 |e|/rf ∈ [1, 2β]

Proposition 6.4 α ∈ [arcsin 1/(2β), 180◦ − 2 arcsin 1/(2β)]

For example, β < 0.75 gives |e|/rf ∈ [1, 1.5] and α ∈
[41.8◦, 96.4◦]. A value of β < 1/

√
2 ≈ 0.71 provides a

non-obtuse triangulation.

These hold locally; i.e., if the local value of βi for xi is smaller,
it provides tighter bounds for the edges and triangles of xi.

6.2. β ratio

The main results are that Opt-βi generates the smallest β values,
and the best blue-noise (the most-random spectra). We get a
smaller β simultaneously with a better spectrum. Opt-βi is the
best, followed by CVT, DistMesh, and then Far-Point.

Unfortunately, the speed of one iteration roughly reverses this
order: DistMesh is the fastest, followed by Lloyd’s iteration
(CVT without Liu et al.’s faster optimization [24]), Far-Point,
and then Opt-βi. One iteration of Opt-βi is 15 × slower than
one iteration of standard CVT. For all methods, the overall
runtime is roughly linear in the number of iterations. However,
Opt-βi is competitive with respect to the overall runtime. For
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(a) CVT, β = 0.827
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(b) DistMesh, β = 0.873
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(c) Far-Point, β = 0.965
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(d) MPS, β = 1.0
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(e) Opt-βi, β = 0.85
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(f) Opt-βi, β = 0.80
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(g) Opt-βi, β = 0.75
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(h) Opt-βi, β = 0.70

Fig. 9. Spectral analysis. Shown here are the Fourier spectrum analyses of
various sample patterns. Each case contains ∼10K samples in a unit box.

10,000 points in the periodic cube, to reach β = 0.85, Opt-
βi took 3.3 seconds and CVT took 10 seconds, because CVT
required more iterations.

Since we only locally optimize the local βi = ric/r
i
f , a some-

what surprising result is that the global rf = mini r
i
f is actu-

ally improved above rMPS. Since we improved β, this implies
that we have also reduced the maximum ric. These features can
be seen from the third and fourth columns of Table 1.

Each βi is smaller than β, so how small β can be and still have
randomness depends on the sample size. A larger sample size
is more likely to have a local case stuck at a larger value of β.
One alternative would be to consider average βi.

6.3. Spatial and spectral analysis

Figs. 7 and 9 analyze the Opt-βi output for different β values,
over the periodic unit box domain. We use common spatial
and spectral measures [29,22,43,17,44,11]. For spatial analysis
in Fig. 7, the zone-plate patterns are input, and we produce
Gaussian-filtered output via our sample sets. Since the pattern
contains a variety of spatial frequencies in different directions,
it is a good stress test to detect any sampling pattern anomalies.
We also plot the spatial samples directly for visual inspection.
Opt-βi exhibits the classic noise/alias trade-off: the smaller the
β, the more uniform the distribution, and thus there is less noise
but more aliasing. Fig. 9 shows the Fourier spectra, radial mean,
and anisotropy. We start to lose blue noise between β = 0.75
and β = 0.7. The noise/alias trade-off does not apply across
methods: for example, even though CVT has a higher β than
our Opt-βi β = 0.8 case, it still produces more aliasing.

6.4. Convergence effect of small βt

Our experience is that, for values of βt above about 1/
√

2 ≈
0.71, the repositioning problem is mostly a geometry prob-
lem. For most local configurations changing point positions to
achieve this βt is eventually possible. Below about 0.71, we
see oscillatory behavior in Fig. 6, and the problem becomes a
discrete configuration problem. To achieve βt = 1/

√
3, each

point must have exactly six neighbors, evenly spaced on a circle
around it. The six-neighbor pattern appears at about β = 0.7 in
the hexagonal shape of the rings in the spectrum, bottom left
of Figure 9. Even with five or seven neighbors, it is difficult
to obtain a β close to 1/

√
3. In the rightmost Opt-βi example

in Fig. 8, with β = 0.75, all vertices have valence five, six, or
seven.

Besides this local discrete configuration constraint, small βt in-
troduces global geometric constraints. The equilateral-triangle
tiling has points aligned along three sets of parallel lines. These
lines constrain points that are far from one another. This is an-
other reason for slow (or no) convergence for small βt. Fig. 11
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shows that little progress is made beyond a certain number of
iterations.

We perform ten Nelder-Mead steps for each local optimization.
Using seven or fewer steps causes the overall algorithm to get
stuck at a larger value of β. Using more steps requires more
run-time; ten steps ensures both convergence and efficiency.

7. Applications

7.0.1. Meshing planar non-convex domains

We generated Well-spaced Blue-noise Distributions (WBDs)
for the bounded non-convex domain in Fig. 10. This is more
challenging than for a periodic square, and all four methods
suffered from boundary constraints. All methods tended to im-
prove the quality of most of the Voronoi cells. However, CVT
and DistMesh violated the disk-free condition. On the other
hand, Far-Point violated the coverage condition. Only Opt-βi

was able to reduce the value of β while preserving both prop-
erties. The other methods increased β over unity within their
first few iterations. The problem is harder for the coarse mesh,
because the boundary has an increased effect. Statistics after
convergence (or more precisely, after stagnation) are given in
Table 1. For Opt-βi we solved a one-dimensional version of
Nelder-Mead optimization to keep points on the boundary.

Algorithm β rc
rMPS

rf
rMPS

minα maxα

MPS 1.0 1.0 1.0 31 115
CVT 1.226 0.931 0.759 24 103

DistMesh 1.089 1.012 0.929 31 114
Far-Point 1.048 1.043 0.996 32 106
Opt-βi 0.988 0.995 1.007 32 110

(a) Coarse mesh, rMPS = 0.0314, Fig. 10 left column.

Algorithm β rc
rMPS

rf
rMPS

minα maxα

MPS 1.0 1.0 1.0 30 117
CVT 1.02 0.989 0.852 33 96

DistMesh 1.07 0.869 0.925 34 107
Far-Point 1.06 1.106 1.047 31 113
Opt-βi 0.932 0.939 1.008 34 99

(b) Fine mesh, rMPS = 0.0157, Fig. 10 right column.
Table 1
Statistics of meshes in Fig. 10 mesh; α denotes triangle angles.

7.0.2. Meshing curved surfaces

We applied Opt-βi to a sphere and the Fertility sculpture. The
disk-free and coverage distances are geodesic. For the uniform
sphere, Fig. 14, Opt-βi reduced β significantly, from 1.0 to
0.73. This is reflected in more regularity in the Voronoi and
Delaunay meshes. Using CVT, the minimum β achieved was
0.81. Fig. 13 shows the quality measure distributions for va-
lence, Delaunay angle, and Delaunay edge length.

(a) MPS, β = 1.0 (b) MPS, β = 1.0

(c) CVT, best β = 1.226 (d) CVT, best β = 1.02

(e) DistMesh, β = 1.089 (f) DistMesh, β = 1.07

(g) Far-Point, β = 1.048 (h) Far-Point, β = 1.06

(i) Opt-βi, β = 0.988 (j) Opt-βi, β = 0.932

Fig. 10. Applying various methods to a coarse (left) and fine (right) mesh
of a non-convex two-dimensional domain. For the finer mesh the boundary
effects are less constraining, and a smaller β was achieved.
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Fig. 11. Typical progress in β, rc/rMPS, and rf/rMPS for CVT and Opt-βi.

(a) Input mesh (b) Opt-βi mesh after convergence

(c) Local β distribution (d) Delaunay Angle Distribution

Fig. 12. Applying Opt-βi on non-uniform surface mesh with linear sizing
function in the z-direction. The angles distribution and local β distribution
are shown for number of iterations untill convergence (or stagnation) occurs.

For the non-uniform sphere, Fig. 12, we used a linear sizing
function in the z-direction, varying from 0.21 to 0.01. We define
the conflicts based on the smaller-disk criteria [27]. Fig. 12
shows that neither the Delaunay angle bounds nor the maximum
global β have changed much; instead their distributions have
changed within about the same intervals.

We took the same approach with the Fertility model, a more
complex shape. Fig. 15 shows that we reach convergence after
a few iterations, and achieve a better angle and local β distri-
bution.

7.1. Image filtering

Bilateral filtering is a core filtering method with a variety of ap-
plications in graphics, vision, and image processing [41]. Sim-
ilar to traditional linear filtering, e.g. Gaussian blur, bilateral
filtering strives to reduce noise through blending nearby pix-
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Fig. 13. β by iteration, and qualities by β, for Opt-βi and CVT. The input
was 1,000 points on a sphere.
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Fig. 14. Meshing for various β values over a sphere surface using 1,000 samples.

(a) Delaunay input mesh (b) Voronoi input mesh

(c) Delaunay after convergence (d) Voronoi after convergence
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(f) Delaunay angle distribution

Fig. 15. Applying Opt-βi on the Fertility model with a non-uniform sizing
function.

els. However, unlike linear filtering which assigns filter weights
based on domain information (spatial pixel locations) only, bi-
lateral filtering also considers range information, such as pixel
colors. This allows better preservations of image features such
as region boundaries.

The downside is that bilateral filtering is slower and more diffi-
cult to accelerate than linear filtering. Many methods have been
proposed to accelerate it [32]. Among these, subsampling [2]
is simple and effective. Instead of using all pixels, Banterle et
al. [2] select only a subset of the kernel pixels. A properly cho-
sen subset yields faster computation without a noticeable loss

in output quality. The authors of [2] experimented with various
subsampling methods, and concluded that Poisson-disk sam-
pling can be an excellent choice, due to its uniformity (reducing
filtering noise) and randomness (low aliasing). Their paper sug-
gests that maximal Poisson-disk sampling could be even better.

Here, we explore maximal Poisson-disk sampling with differ-
ent β for subsampling-accelerated bilateral filtering. Intuitively,
since a smaller β will produce more uniform and more regular
distributions, it has the potential to reduce noise but increase
aliasing in the filtering output. This is confirmed in Figure 16,
in which we experiment through a range of β, using Opt-βi

(β < 1) and other methods (β ≥ 1) [27]. In our experiments it
seems β ∈ [0.85, 0.75] strikes the right balance between uni-
formity (reducing noise) and randomness (avoiding bias).

Measure White Opt-βi, by β Triangle
noise 2 1 0.85 0.75 tiling

Cattle skull
mean error 0.013 0.010 0.0093 0.0089 0.0087 0.012
RMSE 0.020 0.014 0.013 0.013 0.012 0.017

Reflection
mean error 0.020 0.013 0.012 0.011 0.010 0.016
RMSE 0.029 0.020 0.019 0.017 0.017 0.020

Table 2
Mean error and Root Mean Squared Error (RMSE) for various schemes over
models from Fig. 16.

8. Conclusions

This paper introduced a Well-spaced Blue-noise Distribution
(WBD), with β = rc/rf measuring coverage uniformity or
well-spacedness. We proposed the Opt-βi algorithm to change
a random point set to a WBD; blue noise is preserved up to β ≈
0.75. We demonstrated Opt-βi’s efficacy in geometry meshing
and image filtering applications. We believe that the main con-
tribution of this paper is on the introduction and measurement
side, and we envision fruitful future directions for both algo-
rithm and application development. For example, generating a
WBD with β < 1 from scratch is an open problem.

Adaptive and anisotropic sampling. We kept rc and rf constant
throughout the domain, except for the sphere. In principle, we
could extend both to spatially varying functions of sample po-
sitions, for adaptive or anisotropic sampling [23]. The spatial
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Fig. 16. Subsampling-accelerated bilater filtering. β = 0.75 achieves the right balance between uniformity (reducing noise) and randomness (avoiding aliasing).
Notice the noisier results with less uniform sampling (β = 2.0) and more aliasing with more regular sampling (CVT and triangle tiling). For the skull and
reflection cases, we show both the whole images and partial zoom-ins. Table 2 lists the accuracy by β. All results are produced with a kernel width of 40
pixels and 30 samples per kernel, the recommended setting in [2].

and spectral properties of such adaptive/anisotropic distribu-
tions can be analyzed by the differential domain method [44]
through local warping. It remains to formulate an optimization
objective function.

Tiling. We currently compute entire sample sets. A potential
extension is generating sample tiles [9,21,29] for acceleration.

Higher dimensions and meshing. We would like to address d >
2. Recall that MPS [15] can produce β = 1 in any dimension,
but the lower limit achieved by the densest packing is dimen-
sion dependent. In this paper we focused on planar meshing.
Volumetric and general curved surface meshing would be inter-
esting and important extensions. Lower β provides better angles

in d = 2, and better radius-edge condition in d ≥ 2, which are
helpful for a variety of scientific and engineering applications.

Lower β. Our current algorithm can reach β ≈ 0.75. We would
like to investigate the theoretical potential of reaching even
lower values, even though these distributions may have limited
utility due to excessive regularity, as is evident from the hexag-
onal spectrum bias of the β = 0.70 case in Fig. 9. Also, the lo-
cal optimization approach may require too much computation
for small β.
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